
ASE 2008 Review

Reviewer

Last update Mon Jun 2 17:53:12 2008 +0200 CEST

Paper Number 34

Title

Authors

1 - Classification as long paper: C

2 - Classification as short paper: [Not filled in]

3 - Reviewer's Expertise: X

4 - Relevance: Significantly Relevant

5 - Comments for the PC (incl. reason for classification as short paper):

[Not filled in]

6 - Summary:

The paper presents a formalization of an approach to the
specification of automatic, on-site, and bidirectional
synchronizers that can be used for (re)establishing
consistency among related software artifacts without
exporting and importing them to and from an intermediate
representation.

7 - Evaluation, including points in favour and against, and comments for improvement:

Overview

The concept and approach are very interesting and seem like
a promising approach. However, I have no way of judging the
generality of the approach and its properties since the
evaluation is inadequate. The evaluation focuses only on
performance and ignores important issues outlined in
general comments below. The approach is implemented and
applied to a single toy example (and the implementation
seems to be correct because the experiments were executed;
however, authors do not say whether the artifacts were
correctly synchronized).

The paper introduces a lot of notations that are used in
the formalization making it very difficult to read and
understand. I cannot determine that the formalization is
correct, since many things are not properly explained and I
think there are some errors in the formalization.

The idea of the synchronizer graphs is interesting.

To summarize, the presented ideas are interesting and
promising; however, the evaluation is inadequate which
prevents me from accepting the paper with full confidence.

Is the paper in-scope of ASE?
Yes, it proposes an approach to automatic synchronization
of software artifacts, which addresses an important problem
of consistency management among related software artifacts
in software engineering.

Contributions



A compositional approach to the specification of
bidirectional synchronizers. Formalization of the approach.

General comments
My biggest problem with this paper is that the rationale is
not properly presented. Understanding the formulas is
difficult due to the notation and it is even more difficult
because the reader does not understand why certain
definitions are the way they are. The proper intuitions are
not (always) provided. I also think that introducing the
entire notation upfront makes the paper more difficult to
read. In my opinion the notation should be introduced
gradually, before it is first used. This way, the reader
can gradually build up an understanding of both the
notation and the definitions.

Another problem is that the limitations of the approach are
not discussed at all. The performance evaluation, although
supporting the claim that incremental on-site synchr. is
faster, does not address the most important questions. What
kinds of modifications on artifacts are supported? What
happens in the case of conflicting modifications (conflict
resolution?)? What are the limitations? Is keeping the
state of the synchronizer a problem (memory-wise)? Are the
synchronizers presented in the paper all that you have? Is
the EJB example the only example the approach has been
applied to (if so, does it only have the three types?!?).
It is hard to judge the generality of the approach. What
are the relations among artifact restricted to (e.g., only
bijections or something more?)?

Therefore I conclude that the evaluation of the approach is
inadequate.

About Theorem 1. You say that the proof is omitted due to
space reasons. I noticed you published a technical report
out of this submission on an author's web page. One would
expect the tech report to have more detail since it has no
space limitations, however, it does not contain the proof
either. Do you have the proof or not? If not, you should
not state Theorem 1 as a result since it is not
confirmed!!! I realize that the formal proof is not a
trivial task and maybe a material for a separate paper.
However, if the proof was not done it should be mentioned
as a future work. I am puzzled.

Overally, the paper is extremely difficult to follow. I
think using formal notation should be limited to places
where it actually provides benefits. The paper indeed looks
more like a technical report rather than a conference
paper. As a result, extracting ideas and intuitions from
the paper is very difficult. The paper should be first
readable entirely without relying on the formal
definitions. Interested readers should however be able to
delve into the details of formalization. Right now, the
paper can only be 'very deeply understood' or 'not
understood at all'. And this is not due to the inherent
complexity of the presented concepts. I suggest raising the
level of abstraction.

Detailed comments
p. 4. why do you introduce {}t here when it is first used
in Algorithm 2, ln. 8? (see general comments about
notation).

p. 4. propagation? What is s.data? Why? give the rationale.
It is not understandable.

p. 4. "initially the synchronizer is in state s.v and



assume all artifacts are empty" - does that mean that
existing artifacts cannot be synchronized?

p.5. synchronizer id. "if m1 and m2 are not distinct it
returns error". So for example if element a was modified
with value v1 in one artifact and with a value v2 in the
other artifact (which is a conflict) then a cannot be
synchronized. What happens next? What does an error mean?
Does the synchronization terminate or can the remaining
elements be synchronized? I suppose this is a limitation
you should discuss in evaluation.

synchronizer remove. The explanation is inadequate. It does
not replace the artifact, but any modification of the
artifact into del. I don't understand the first condition:
shouldn't that empty modification be replaced with del too?

synchronizer equal. How can you make an entire artifact
equal to a primitive value? Why do you pass 'error' as a
state to id? I'd say that sync cannot actually 'force' an
artifact to be equal to a value because id cannot
'override' operations which are not distinct.

p.5. dget. "State records current values of the three
artifacts". What? Is a primitive value (k) also an
artifact? What exactly is an artifact for you? Is it any
member of U? This is an important assumption that was not
stated anywhere.

merge is not understandable. What is the rationale? Why?
What does it actually do?

p. 7. "the more choices the synchronizer has to ..." What
choices? What is a choice? Options? This part is not
understandable. What is a "more determined synchronizer"?
Explain.

You say a synchronizer may be invoked again if its
variables changed. Are there any guarantees on the
termination of the algorithm? Is it possible to build a
synchronizer that does not terminate?

p. 7. Dictionary map combinator. R_k is a bijection. Does
that imply that the relation between any two artifacts has
to be a bijection? Can a single element in one artifact
correspond to multiple elements in the other artifact? This
limitation should be discussed in evaluation.

p. 8. So resync can be used to synchronize independently
created (existing) artifacts by computing the initial state
of the synchronizer. Should say so explicitly in evaluation
that resync is required for that.

Related work Benjamin et al. -> Pierce et al. Yes, but the
common artifact must be the view/abstraction of both
artifacts (contain the shared information).

It is not so simple to define a synchronizer for
concatenating strings, unless the strings have some special
structure.

View consistency. Actually, Harmony was designed for this
problem.

Points in favour and against:
+ promising idea, relevant to ASE
- hard to read and understand
- inadequate evaluation, major rewrite required




