UML Toolchain

Using Fujaba and UML Lab in a toolchain

Andreas Koch, Albert Ziindorf
Kassel University, Software Engineering,
Department of Computer Science and Electrical Engineering,
Wilhelmshdher Allee 73,
34121 Kassel, Germany
[andreas.koch | zuendorfl@cs.uni-kassel.de

http://www.se.eecs.uni-kassel.de/

ABSTRACT

Every CASE-Tool has its strengths and weaknesses. Of
course, Fujaba is not apart from this rule. Thus, why not
combine the strengths of Fujaba with another application in
a toolchain.

This paper introduces a toolchain covering Fujaba and
UML Lab. Traditionally a toolchain is based on the use
of an im-/export functionality to transfer data between the
different tools by persisting this data with a common file
format. As the requirements of the introduced toolchain
cannot be fulfilled by this mechanism, a synchronization of
models based on the Fujaba respectively UML Lab meta-
model is implemented. One requirement is to ensure that
changing anything in the model of one tool has an immedi-
ate impact on the related model in the other tool. Therefor
the model synchronization handles every change separately
by analyzing change event objects resulting from each model
modification and ensures a (preferably) immediate handling
of changes.

1. INTRODUCTION

Each software application is developed in terms of a spe-
cific purpose. In the context of this purpose the application
can (or at least it should) provide any necessary functional-
ity. However, the requirements of an user often exceed these
functionalities or the user prefers a similar approach offered
by another application. Either way, one application alone
cannot satisfy the requirements of this user. Therefore the
creation of a toolchain containing all necessary applications
to complete the desired task is recommendable.

The concept of a toolchain can be interpreted differently.
It can describe an unidirectional order of tools (see figure
1(a)) as well as a bidirectionally traversable chain (see figure
1(b)) or any other set of tools. Depending on the structure
creating a new toolchain is affected by different challenges,
but a main task always refers to the data exchange between
the included tools. This problem can be separated into two
connected sub tasks. The first task addresses the general
way how data, created in one tool, can be transferred into
the next tool (in the chain) to proceed working. The second
task deals with handling subsequent changes in an inbound
document. This means to define how, if at all, the modifi-
cation of data in one tool can be applied to existing data in
another tool.

A traditional approach to provide the data exchange is
the use of an im-/export functionality: at first, all necessary

data is persisted by exporting it with tool A. Afterwards
tool B imports this data and the user can continue to work.
This approach lacks, amongst other things, in the necessity
of a (manual) intervention each time a data exchange is per-
formed. Additionally, with a common and standardized data
format, there can be difficulties persisting any tool specific
data (e.g. positioning of GUI elements) or preserving this
data after a future export by another tool. This lost data
is usually not relevant in an unidirectional toolchain, but
impedes the usage of a bidirectional traversable toolchain.
There, every step back would result in the, at worst manual,
restoration of all lost data.

< o
-

<
-

A2
|

(a) (b)
Figure 1: Structure of different toolchains

The introduced UML Toolchain with the CASE-Tools Fu-
jaba, to be more precise Fujabadeclipse, and UML Lab is tar-
geted on a tight integration of their functionalities and bidi-
rectional traversable. Therefore it is necessary that changes,
for example on a model in Fujaba, are immediate applied to
the equivalent model in UML Lab. Using an im-/export
functionality does not fulfill these requirements in several
points. Besides the manual interaction to im-/export any
data, this approach does not rely on altering existing data,
but storing and restoring (means deleting and recreating) of
all available data. To address these problems an automat-
ical synchronization of equivalent parts of the metamodels
in both tools has been implemented. Additionally, this syn-
chronization depends on the usage of event objects triggered
by each modification of a model. This means: every change
is handled separately.

59 *cdm2.umled 53 Wheeljava &3 Car.java =0
4 package example; -
Car #import java.util.Set;[]

assemble { wheels : Wheel)

£

car |V

*
wheel
Wheel

winterTire: Boolean «...»
| |

checkProfile() : Boolean

poblic class Wheel {

m

private int size;

private Boolean winterTire;

public void setWinterTire (Boolean walue) {

this.winterTire = walue;

public Boolean getWinterTire() {

retorn this.winterTire;

Figure 2: screenshot of UML Lab showing source code and the resulting class diagram

2. UML LAB

UML Lab is a modeling IDE developed by the Yatta So-
lutions GmbH]7]. As it is based on the eclipse platform
[2], the implementation of the UML specification 2.x[6] for
the eclipse platform is used as metamodel. The influence of
Fujaba during the development of UML Lab is reflected in
the effort to combine code generation and reverse engineer-
ing. Based on the concept “From UML to Java and back
again” a language independent synchronization of source
code and model was developed and integrated into UML
Lab. This Round-Trip-Engineering™®[1] uses textual tem-
plates for generation as well as reverse engineering to enable
the parallel work in source code and diagram as shown in
figure 2.

3. DEFINING THE TOOLCHAIN

To define the core requirements of the introduced toolchain
two different groups of users have to be analyzed.

The first group consists of users, that are familiar with Fu-
jaba. They usually work with UML Lab only, if it provides a
noticeable advantage. The Round-Trip-Engineering™®, ac-
cessible through the toolchain, enables the synchronization
of generated source code with the Fujaba class diagram and
therefore falls into this category. Additionally, as UML Lab
uses the implementation of a current version of the UML
metamodel, the toolchain provides access to new features of
the UML specification without the necessity to change the
Fujaba metamodel.

The second group of users are familiar with UML Lab.
These consider using Fujaba only where UML Lab does not
provide the appropriate tools. Especially the concept of
Story Driven Modeling(SDM)[3] [8] in Fujaba has to be men-
tioned in this context. This includes the creation/editing of
story diagrams, which can (now) be based on Fujaba and
UML Lab models. An additional use case is to integrate
source code for these modeled story diagrams into UML
Labs generated source code. An explicit request apart from
this is, that legacy projects from Fujaba shall be usable (and
editable) in UML Lab.

To satisfy both groups needs, the effort to use the other

tool has to be kept as low as possible. In addition, as one
wants to use his tool-of-choice, a class diagram has to be
editable with both tools.

4. IMPLEMENTING THE TOOLCHAIN

To discuss the details of the implementation, an example
usage of the toolchain is given:

1. Reverse Engineering of existing source code (UML Lab)

2. Extend one class with an additional method (Fujaba
or UML Lab)

3. Create a story diagram for this method (Fujaba)
4. Generate code (UML Lab (with Fujaba))

After one or more existing classes are reverse engineered
with UML Lab (step 1), the resulting class diagram can be
edited with both tools - depending on one’s preferences. In
step 3 switching to Fujaba is necessary to create the story
diagram for a formerly created method. The last step, the
code generation, needs more explanation. As both tools pro-
vide an own code generation, each tool can solely generate
executable code. However, UML Lab does not generate code
for story diagrams and the code generation of Fujaba is not
automatically linked to the previously reverse engineered
classes. Accordingly, the combined generation with both
tools is recommended: first of all the source code for story
diagrams is generated with Fujaba; afterwards it is passed
to UML Lab and integrated into its generated source code.
Therefore switching back to UML Lab is required again.

As steps like these are executed regularly and in an un-
defined order, one has to switch between Fujaba and UML
Lab frequently. T'wo requirements result from this conclu-
sion. First of all, as much as possible should be done without
any explicit user interaction. This includes the automatical
synchronization of model changes or the combined code gen-
eration. With the automatic model synchronization one has
not to take care about the currently active tool, because
both models (Fujaba and UML Lab) are always consistent
with each other. Secondly, features of the other tool have to

22 *demoumled 52 L B

Car

.| assemble (wheel : Wheel |
¥ Delete

Create/Goto Method
Generate 50M Code

Mavigate to 3

Layout 3

Appearance 3
winte Hide Element

Show neighbors 3

check

juji]
i}

Configure Classdiagram

Collapse/Expand 3

Car::assemble (wheel: Wheel): Void

m

this wcreated car wheel

(L I

Export as image...

oject |:_\':°: demo

|;§°: assemble(Wheel) &7

Figure 3: Usage of the story diagram editor in the UML Lab class diagram editor

be accessible directly. A simple example: to create and edit
story diagrams while using the class diagram editor of UML
Lab, its context menu is extended with a new menu entry to
open the story diagram editor and switch to it automatically
(figure 3).

All those features are provided externally and added by
using plugin mechanisms; on the one hand to avoid depen-
dencies between the tools, on the other hand because they
shall not (Fujaba) or cannot (UML Lab) be modified. For
this reasons an adapter is used to connect Fujaba and UML
Lab. This adapter takes care of the model synchronization
and the extension of the tools; for example the additional
entries in context menus.

S. MODEL SYNCHRONIZATION

The model synchronization is not discussed in detail in
this paper, but we will give a brief overview of its general
idea and structure. For the implementation details see [5].

To perform a valid synchronization of two models their
metamodels need to be examined and similar parts identi-
fied. By analyzing the metamodels of Fujaba and UML Lab
one common part concerning class diagrams can be found.
Accordingly the synchronization is restricted to this common
elements. These elements are afterwards used to find suit-
able mappings; for example FMethod (Fujaba metamodel)
can be mapped to Operation (UML 2.x metamodel). Based
on this mappings different handlers are implemented, each
responsible for one field of one metamodel element pair;
for example one handler synchronizes the return type of
FMethod with Operation and vice versa.

Imagine the following scenario: there are two already syn-
chronized models in Fujaba and UML Lab that contain a
method (assemble()) associated with a story diagram. This
method is extended by a new parameter (wheel: Wheel) us-
ing the UML Lab class diagram editor. After switching back
to its story diagram, this new parameter should be immedi-
ately added and usable. The result is shown in figure 3 with

the class diagram editor on the left and the story diagram
editor on the right side.

As both metamodels provide an implementation of the ob-
server /listener pattern, these are used to synchronize every
change separately; for example events are fired after the cre-
ation of the new parameter, the change of its name or adding
it to a method. These events are analyzed and delegated to
the responsible handlers. The only information that can-
not be extracted from these events is the target object the
change should be applied on. For this purpose the adapter
manages all known object mappings and makes them avail-
able to the handlers. These mappings are generated every
time a new object is created as well as after loading and
scanning of associated models. Finally the handler combines
the informations from the event with the mapped object to
synchronize the change.

Avoiding inconsistent models was a main challenge dur-
ing the creation of the synchronization mechanism; espe-
cially asymmetric structures were problematic. For example
Property needs to be mapped to FAttr or FRole depending
on attribute values of a Property object. Therefore every
time a Property object is changed the mapped target object
has to be evaluated correctly. As a result some events have
to be collected and not synchronized until a consistent result
can be ensured.

6. SUMMARY AND FUTURE WORK

UML Toolchain can be used to work in parallel with Fu-
jaba and UML Lab. This means one can create/edit class
and story diagrams, generate code or reverse engineer exist-
ing code without a manual switch between the tools. There-
fore every model change is automatically synchronized i.e.
immediately applied to the related model in the other tool.

For the future work two topics can be examined sepa-
rately. The first deals with the ideas to expand the toolchain;
not by integration another tool, but by extending the syn-
chronized part of the metamodels. This includes for ex-

ample the synchronization of story diagram when they are
integrated into UML Lab. Additionally, the usability can
be improved in some points for example to administrate the
synchronized models. This includes a temporary disconnect
of models or a general overview to show all synchronized
(loaded or not loaded) models.

The second issue is aimed onto the model synchroniza-
tion. As the example uses a programmatically implemen-
tation, the framework provides interfaces to easily attach
other mechanisms. For example the integration of the triple
interactive graph grammar (TiG) interpreter[4] is planned
in the near future.

7. REFERENCES

[1] M. Bork, L. Geiger, C. Schneider, and A. Ziindorf.
Towards roundtrip engineering - a template-based
reverse engineering approach. In I. Schieferdecker and
A. Hartman, editors, ECMDA-FA, volume 5095 of
Lecture Notes in Computer Science, pages 33-47.
Springer, 2008. http://dblp.uni-
trier.de/db/conf/ecmdafa/ecmdafa2008. htmlBork GSZ08.

[2] Eclipse platform. http://www.eclipse.org/eclipse/.

[3] T. Fischer, J. Niere, L. Torunski, and A. Ziindorf. Story
diagrams: A new graph rewrite language based on the
unified modeling language. In Proc. of the 6"
International Workshop on Theory and Application of
Graph Transformation. Paderborn, Germany, 1998.

[4] B. Grusie. Ein objektorientierter, interaktiver Triple

Graph Grammatik Interpreter. Master’s thesis,

University of Kassel, Kassel, Germany, 2010.

A. Koch. Echtzeit Synchronisierung von UML-Modellen

unterschiedlicher technischer Basis am Beispiel von

UML Lab und Fujaba. Master’s thesis, University of

Kassel, Kassel, Germany, 2010.

Implementation of the UML 2.x metamodel for the

Eclipse platform. http://wiki.eclipse.org/MDT-UML2.

[7] Yatta Solutions GmbH.

http://www.uml-lab.com/en/uml-lab/.

A. Ziindorf. Rigorous object oriented software

development. Habilitation Thesis, University of

Paderborn, 2001.

5

[6

8

